Back to Search
Start Over
On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems.
- Source :
- AIMS Mathematics (2473-6988); 2024, Vol. 9 Issue 6, p14106-14129, 24p
- Publication Year :
- 2024
-
Abstract
- The main aim of this paper is to study the Cauchy problem for nonlinear differential equations of fractional order containing the weighted Riemann-Liouville fractional derivative of a function with respect to another function. The equivalence of this problem and a nonlinear Volterratype integral equation of the second kind have been presented. In addition, the existence and uniqueness of the solution to the considered Cauchy problem are proved using Banach's fixed point theorem and the method of successive approximations. Finally, we obtain a new estimate of the weighted Riemann-Liouville fractional derivative of a function with respect to functions at their extreme points. With the assistance of the estimate obtained, we develop the comparison theorems of fractional differential inequalities, strict as well as nonstrict, involving weighted Riemann-Liouville differential operators of a function with respect to functions of order d, 0 < d < 1. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- AIMS Mathematics (2473-6988)
- Publication Type :
- Academic Journal
- Accession number :
- 177553475
- Full Text :
- https://doi.org/10.3934/math.2024686