Back to Search Start Over

Myricetin Acts as an Inhibitor of Type II NADH Dehydrogenase from Staphylococcus aureus.

Authors :
Zhou, Jia-Le
Chen, Hao-Han
Xu, Jian
Huang, Ming-Yu
Wang, Jun-Feng
Shen, Hao-Jie
Shen, Sheng-Xiang
Gao, Cheng-Xian
Qian, Chao-Dong
Source :
Molecules; May2024, Vol. 29 Issue 10, p2354, 13p
Publication Year :
2024

Abstract

Background: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. Results: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC<subscript>50</subscript>) of 2 μM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 μg/mL. Time–kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. Conclusions: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
10
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
177498852
Full Text :
https://doi.org/10.3390/molecules29102354