Back to Search
Start Over
Appropriate Nitrogen Application for Alleviation of Soil Moisture-Driven Growth Inhibition of Okra (Abelmoschus esculentus L. (Moench)).
- Source :
- Horticulturae; May2024, Vol. 10 Issue 5, p425, 16p
- Publication Year :
- 2024
-
Abstract
- Uneven rainfall, in the context of global warming, can cause soil moisture fluctuations (SMFs) that harm crop growth, and it is not yet known whether nitrogen (N) can mitigate the harm caused by a strong SMF. This paper uses okra as a test subject and sets three SMFs of 45–55% FC (W<subscript>1</subscript>), 35–65% FC (W<subscript>2</subscript>), and 25–75% FC (W<subscript>3</subscript>) and three N applications of 0 kg hm<superscript>−2</superscript> (N<subscript>0</subscript>), 110 kg hm<superscript>−2</superscript> (N<subscript>1</subscript>), and 330 kg hm<superscript>−2</superscript> (N<subscript>2</subscript>) to investigate the effects of SMF and N application on the physiological and biochemical aspects of okra. The results demonstrated that okra exhibited the highest values in stem diameter, number of leaves, photosynthesis characteristics, antioxidant enzyme activity, and yield under the N<subscript>1</subscript> treatment. The average yield in the N<subscript>1</subscript> treatment was 149.8 g, significantly surpassing the average yields of the N<subscript>0</subscript> (129.8 g) and N<subscript>3</subscript> (84.0 g) treatments. Stomatal density, antioxidant enzyme activity, malondialdehyde content, and proline content in okra leaves were highest in the W<subscript>3</subscript> treatment, indicating that plants experienced stress in the W<subscript>3</subscript> treatment. However, the agronomic traits and yields of okra in the N<subscript>1</subscript> treatment were higher than those in the N<subscript>0</subscript> and N<subscript>1</subscript> treatments, indicating that the crop damage caused by W<subscript>3</subscript> could be mitigated by an appropriate amount of N application. The N<subscript>1</subscript>W<subscript>1</subscript> treatment emerged as the most suitable combination for okra growth in this study, exhibiting the highest stem diameter, leaf count, photosynthetic characteristics, and yield (201.3 g). Notably, this yield was 67.8% higher than the lowest treatment (N2W3), signifying a significant improvement. [ABSTRACT FROM AUTHOR]
- Subjects :
- OKRA
CROP growth
RAINFALL
SOIL moisture
GLOBAL warming
NITROGEN
Subjects
Details
- Language :
- English
- ISSN :
- 23117524
- Volume :
- 10
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Horticulturae
- Publication Type :
- Academic Journal
- Accession number :
- 177498555
- Full Text :
- https://doi.org/10.3390/horticulturae10050425