Back to Search Start Over

Optimization of High-Density Fermentation Conditions for Saccharomycopsis fibuligera Y1402 through Response Surface Analysis.

Authors :
Yuan, Hongyang
Sun, Qi
Wang, Lanshuang
Fu, Zhilei
Zhou, Tianze
Ma, Jinghao
Liu, Xiaoyan
Fan, Guangsen
Teng, Chao
Source :
Foods; May2024, Vol. 13 Issue 10, p1546, 17p
Publication Year :
2024

Abstract

Saccharomycopsis fibuligera, which produces enzymes like amylase and protease as well as flavor substances like β-phenyl ethanol and phenyl acetate, plays a crucial role in traditional fermented foods. However, this strain still lacks a high-density fermentation culture, which has had an impact on the strain's industrial application process. Therefore, this study investigated the optimization of medium ingredients and fermentation conditions for high-density fermentation of S. fibuligera Y1402 through single-factor design, Plackett–Burman design, steepest ascent test, and response surface analysis. The study found that glucose at 360.61 g/L, peptone at 50 g/L, yeast extract at 14.65 g/L, KH<subscript>2</subscript>PO<subscript>4</subscript> at 5.49 g/L, MgSO<subscript>4</subscript> at 0.40 g/L, and CuSO<subscript>4</subscript> at 0.01 g/L were the best medium ingredients for S. fibuligera Y1402. Under these conditions, after three days of fermentation, the total colony count reached 1.79 × 10<superscript>8</superscript> CFU/mL. The optimal fermentation conditions were determined to be an initial pH of 6.0, an inoculum size of 1.10%, a liquid volume of 12.5 mL/250 mL, a rotation speed of 120 r/min, a fermentation temperature of 21 °C and a fermentation time of 53.50 h. When fermentation was conducted using the optimized medium and conditions, the total colony count achieved a remarkable value of 5.50 × 10<superscript>9</superscript> CFU/mL, exhibiting a substantial increase of nearly 31 times the original value in the optimal culture medium. This significant advancement offers valuable insights and a reference for the industrial-scale production of S. fibuligera. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23048158
Volume :
13
Issue :
10
Database :
Complementary Index
Journal :
Foods
Publication Type :
Academic Journal
Accession number :
177494839
Full Text :
https://doi.org/10.3390/foods13101546