Back to Search
Start Over
Hybrid Machine Learning Algorithms for Prediction of Failure Modes and Punching Resistance in Slab-Column Connections with Shear Reinforcement.
- Source :
- Buildings (2075-5309); May2024, Vol. 14 Issue 5, p1247, 20p
- Publication Year :
- 2024
-
Abstract
- This study presents a data-driven model for identifying failure modes (FMs) and predicting the corresponding punching shear resistance of slab-column connections with shear reinforcement. An experimental database that contains 328 test results is used to determine nine input variables based on the punching shear mechanism. A comparison is conducted between three typical machine learning (ML) approaches: random forest (RF), light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost) and two hybrid optimized algorithms: grey wolf optimization (GWO) and whale optimization algorithm (WOA). It was found that the XGBoost classifier had the highest accuracy rate, precision, and recall values for FM identification. In testing, WOA-XGBoost has the best accuracy in predicting punching shear resistance, with R<superscript>2</superscript>, MAE, and RMSE values of 0.9642, 0.087 MN, and 0.126 MN, respectively. However, a comparison between experimental values and calculated values derived from classical analytical methods clearly demonstrates that existing design codes need to be improved. Additionally, Shapley additive explanations (SHAP) were applied to explain the model's predictions, with factors categorized according to their impact on failure modes and punching shear resistance. By modifying these parameters, punching resistance can be improved while reducing unpredictable failure. With the proposed hybrid algorithms, it is possible to determine the failure modes and the punching shear resistance of slabs during the preliminary stages of the construction. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20755309
- Volume :
- 14
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Buildings (2075-5309)
- Publication Type :
- Academic Journal
- Accession number :
- 177492358
- Full Text :
- https://doi.org/10.3390/buildings14051247