Back to Search Start Over

DMAF-NET: Deep Multi-Scale Attention Fusion Network for Hyperspectral Image Classification with Limited Samples.

Authors :
Guo, Hufeng
Liu, Wenyi
Source :
Sensors (14248220); May2024, Vol. 24 Issue 10, p3153, 26p
Publication Year :
2024

Abstract

In recent years, deep learning methods have achieved remarkable success in hyperspectral image classification (HSIC), and the utilization of convolutional neural networks (CNNs) has proven to be highly effective. However, there are still several critical issues that need to be addressed in the HSIC task, such as the lack of labeled training samples, which constrains the classification accuracy and generalization ability of CNNs. To address this problem, a deep multi-scale attention fusion network (DMAF-NET) is proposed in this paper. This network is based on multi-scale features and fully exploits the deep features of samples from multiple levels and different perspectives with an aim to enhance HSIC results using limited samples. The innovation of this article is mainly reflected in three aspects: Firstly, a novel baseline network for multi-scale feature extraction is designed with a pyramid structure and densely connected 3D octave convolutional network enabling the extraction of deep-level information from features at different granularities. Secondly, a multi-scale spatial–spectral attention module and a pyramidal multi-scale channel attention module are designed, respectively. This allows modeling of the comprehensive dependencies of coordinates and directions, local and global, in four dimensions. Finally, a multi-attention fusion module is designed to effectively combine feature mappings extracted from multiple branches. Extensive experiments on four popular datasets demonstrate that the proposed method can achieve high classification accuracy even with fewer labeled samples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
10
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
177490321
Full Text :
https://doi.org/10.3390/s24103153