Back to Search Start Over

Additively Manufactured Bionic Corrugated Lightweight Honeycomb Structures with Controlled Deformation Load-Bearing Properties.

Authors :
Li, Jie
Wang, Han
Kong, Xianghao
Jiao, Zhiwei
Yang, Weimin
Source :
Materials (1996-1944); May2024, Vol. 17 Issue 10, p2274, 17p
Publication Year :
2024

Abstract

The rapid development of additive manufacturing (AM) has facilitated the creation of bionic lightweight, energy-absorbing structures, enabling the implementation of more sophisticated internal structural designs. For protective structures, the utilization of artificially controlled deformation patterns can effectively reduce uncertainties arising from random structural damage and enhance deformation stability. This paper proposed a bionic corrugated lightweight honeycomb structure with controllable deformation. The force on the onset state of deformation of the overall structure was investigated, and the possibility of controlled deformation in the homogeneous structure was compared with that in the corrugated structure. The corrugated structures exhibited a second load-bearing capacity wave peak, with the load-bearing capacity reaching 60.7% to 117.29% of the first load-bearing peak. The damage morphology of the corrugated structure still maintained relative integrity. In terms of energy absorption capacity, the corrugated lightweight structure has a much stronger energy absorption capacity than the homogeneous structure due to the second peak of the load carrying capacity. The findings of this study suggested that the combination of geometric customization and longitudinal corrugation through additive manufacturing offers a promising approach for the development of high-performance energy-absorbing structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
10
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
177489510
Full Text :
https://doi.org/10.3390/ma17102274