Back to Search Start Over

Fractional Skellam Process of Order k.

Authors :
Kataria, K. K.
Khandakar, M.
Source :
Journal of Theoretical Probability; Jun2024, Vol. 37 Issue 2, p1333-1356, 24p
Publication Year :
2024

Abstract

We introduce and study a fractional version of the Skellam process of order k by time-changing it with an independent inverse stable subordinator. We call it the fractional Skellam process of order k (FSPoK). An integral representation for its one-dimensional distributions and their governing system of fractional differential equations are obtained. We derive the probability generating function, mean, variance and covariance of FSPoK which are utilized to establish its long-range dependence property. Later, we consider two time-changed versions of the FSPoK. These are obtained by time-changing the FSPoK by an independent Lévy subordinator and its inverse. Some distributional properties and particular cases are discussed for these time-changed processes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08949840
Volume :
37
Issue :
2
Database :
Complementary Index
Journal :
Journal of Theoretical Probability
Publication Type :
Academic Journal
Accession number :
177481639
Full Text :
https://doi.org/10.1007/s10959-024-01314-8