Back to Search Start Over

Molecular orbital breaking in photo-mediated organosilicon Schiff base ferroelectric crystals.

Authors :
Gu, Zhu-Xiao
Zhang, Nan
Zhang, Yao
Liu, Bin
Jiang, Huan-Huan
Xu, Hua-Ming
Wang, Peng
Jiang, Qing
Xiong, Ren-Gen
Zhang, Han-Yue
Source :
Nature Communications; 5/24/2024, Vol. 15 Issue 1, p1-10, 10p
Publication Year :
2024

Abstract

Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C–O in the enol form and C–N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors. Switchable structural and physical bistability in ferroelectric materials can be achieved as result of molecular orbital breaking. Here, the authors describe the photo-mediated bistability in organosilicon Schiff base ferroelectric crystals for the modulation of dielectric, second-harmonic generation, and ferroelectric polarization and showing good in vitro biocompatibility. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
177462902
Full Text :
https://doi.org/10.1038/s41467-024-48405-y