Back to Search
Start Over
Quasi-Static and Dynamic Crack Propagation by Phase Field Modeling: Comparison with Previous Results and Experimental Validation.
- Source :
- Applied Sciences (2076-3417); May2024, Vol. 14 Issue 10, p4000, 18p
- Publication Year :
- 2024
-
Abstract
- In this paper, experimental tensile tests for pre-cracked high Carbon steel 'C90' specimens were performed for quasi-static and dynamic loading. High loading velocity affects the crack patterns by preventing deflection. On the other hand, an efficient numerical tool based on the phase field model was developed and validated to predict brittle fracture trajectories. A staggered numerical scheme was adopted to solve the displacement and damage fields separately. Implementation efficiency in initiating and propagating cracks, even from an undamaged microstructure, was proved. The effect of the critical fracture energy density G<subscript>c</subscript> on the crack path was tested; with smaller G<subscript>c</subscript>, the crack patterns become more complex. In addition, the impact of loading velocities was examined, and earlier and faster crack formation and greater crack branching is observed with higher impact velocity. In this study, bidimensional plane stress cases were treated. The phase field model with hybrid formulation was able to predict crack pattern and especially crack arrest and branching found in the literature. The developed model accurately determined the transition zone of the crack path topology that has been observed experimentally. [ABSTRACT FROM AUTHOR]
- Subjects :
- CRACK propagation
BRITTLE fractures
CARBON steel
TENSILE tests
DYNAMIC loads
Subjects
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 14
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 177458741
- Full Text :
- https://doi.org/10.3390/app14104000