Back to Search
Start Over
D3EGFR: a webserver for deep learning-guided drug sensitivity prediction and drug response information retrieval for EGFR mutation-driven lung cancer.
- Source :
- Briefings in Bioinformatics; May2024, Vol. 25 Issue 3, p1-10, 10p
- Publication Year :
- 2024
-
Abstract
- As key oncogenic drivers in non-small-cell lung cancer (NSCLC), various mutations in the epidermal growth factor receptor (EGFR) with variable drug sensitivities have been a major obstacle for precision medicine. To achieve clinical-level drug recommendations, a platform for clinical patient case retrieval and reliable drug sensitivity prediction is highly expected. Therefore, we built a database, D3EGFRdb, with the clinicopathologic characteristics and drug responses of 1339 patients with EGFR mutations via literature mining. On the basis of D3EGFRdb, we developed a deep learning-based prediction model, D3EGFRAI, for drug sensitivity prediction of new EGFR mutation-driven NSCLC. Model validations of D3EGFRAI showed a prediction accuracy of 0.81 and 0.85 for patients from D3EGFRdb and our hospitals, respectively. Furthermore, mutation scanning of the crucial residues inside drug-binding pockets, which may occur in the future, was performed to explore their drug sensitivity changes. D3EGFR is the first platform to achieve clinical-level drug response prediction of all approved small molecule drugs for EGFR mutation-driven lung cancer and is freely accessible at https://www.d3pharma.com/D3EGFR/index.php. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14675463
- Volume :
- 25
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Briefings in Bioinformatics
- Publication Type :
- Academic Journal
- Accession number :
- 177375748
- Full Text :
- https://doi.org/10.1093/bib/bbae121