Back to Search Start Over

Optimizing spatio-temporal correlation structures for modeling food security in Africa: a simulation-based investigation.

Authors :
Bofa, Adusei
Zewotir, Temesgen
Source :
BMC Bioinformatics; 4/27/2024, Vol. 25 Issue 1, p1-24, 24p
Publication Year :
2024

Abstract

This study investigates the impact of spatio- temporal correlation using four spatio-temporal models: Spatio-Temporal Poisson Linear Trend Model (SPLTM), Poisson Temporal Model (TMS), Spatio-Temporal Poisson Anova Model (SPAM), and Spatio-Temporal Poisson Separable Model (STSM) concerning food security and nutrition in Africa. Evaluating model goodness of fit using the Watanabe Akaike Information Criterion (WAIC) and assessing bias through root mean square error and mean absolute error values revealed a consistent monotonic pattern. SPLTM consistently demonstrates a propensity for overestimating food security, while TMS exhibits a diverse bias profile, shifting between overestimation and underestimation based on varying correlation settings. SPAM emerges as a beacon of reliability, showcasing minimal bias and WAIC across diverse scenarios, while STSM consistently underestimates food security, particularly in regions marked by low to moderate spatio-temporal correlation. SPAM consistently outperforms other models, making it a top choice for modeling food security and nutrition dynamics in Africa. This research highlights the impact of spatial and temporal correlations on food security and nutrition patterns and provides guidance for model selection and refinement. Researchers are encouraged to meticulously evaluate the biases and goodness of fit characteristics of models, ensuring their alignment with the specific attributes of their data and research goals. This knowledge empowers researchers to select models that offer reliability and consistency, enhancing the applicability of their findings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712105
Volume :
25
Issue :
1
Database :
Complementary Index
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
177349820
Full Text :
https://doi.org/10.1186/s12859-024-05791-w