Back to Search Start Over

Adaptive control for uncrewed aerial vehicles based on communication information optimization in complex environments.

Authors :
Wang, Zirong
Han, Zhengyu
Tayyaba, Shahzadi
Source :
PeerJ Computer Science; Apr2024, p1-20, 20p
Publication Year :
2024

Abstract

The utilization of drone technology thrives in diverse domains, including aviation, military operations, and logistics. The pervasive adoption of this technology aims to enhance efficiency while mitigating hazards and expenditures. In complex contexts, the governing parameters of uncrewed aerial vehicles (UAV) require real-time adjustments for flight safety and efficacy. To improve the attitude estimation accuracy, this article introduces a ATT-Bi-LSTM framework for optimizing UAVs through adaptive parameter control, which integrates the state information gleaned from communication signals. The ATT-Bi-LSTM achieves data feature extraction by means of a two-layer Bidirectional Long Short-Term Memory (BI-LSTM) at its inception to enhance the feature. Subsequently, it harnesses the attention mechanism to amplify the LSTM network's output, thereby enabling the optimal control of UAV positioning. During the empirical phase, we employ optical system data for the comparative validation of the model. The outcomes underscore the commendable performance of the proposed framework in this study, particularly with regard to the three pivotal position indicators: yaw, pitch, and roll. In the comparison of indicators such as RMSR and MAE, the proposed model has the lowest error, which provides algorithm support and important reference for future UAV optimization control research. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23765992
Database :
Complementary Index
Journal :
PeerJ Computer Science
Publication Type :
Academic Journal
Accession number :
177325784
Full Text :
https://doi.org/10.7717/peerj-cs.1920