Back to Search Start Over

Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice.

Authors :
Kado, Takeshi
Tomimaru, Yoshito
Kobayashi, Shogo
Harada, Akima
Sasaki, Kazuki
Iwagami, Yoshifumi
Yamada, Daisaku
Noda, Takehiro
Takahashi, Hidenori
Kita, Shunbun
Shimomura, Iichiro
Miyagawa, Shigeru
Doki, Yuichiro
Eguchi, Hidetoshi
Source :
Journal of Diabetes Research; 5/17/2024, Vol. 2024, p1-14, 14p
Publication Year :
2024

Abstract

Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects" mediated by angiogenesis and "direct effects" of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146745
Volume :
2024
Database :
Complementary Index
Journal :
Journal of Diabetes Research
Publication Type :
Academic Journal
Accession number :
177320769
Full Text :
https://doi.org/10.1155/2024/5574968