Back to Search Start Over

The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression.

Authors :
Murray-Nerger, Laura A.
Lozano, Clarisel
Burton, Eric M.
Liao, Yifei
Ungerleider, Nathan A.
Guo, Rui
Gewurz, Benjamin E.
Source :
Nature Communications; 5/16/2024, Vol. 15 Issue 1, p1-17, 17p
Publication Year :
2024

Abstract

Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency. Here, Murray-Nerger et al use a genome-wide CRISPR/Cas9 screen to show that the nuclear protein SFPQ suppresses lytic reactivation of Epstein-Barr virus by promoting the expression and accumulation of linker histone H1 on the viral genome. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
177312344
Full Text :
https://doi.org/10.1038/s41467-024-48333-x