Back to Search Start Over

Silver isotope analysis and systematics of native gold from the Rajapalot Co-enriched gold deposit, Finnish Lapland.

Authors :
Tepsell, J.
Lahaye, Y.
Molnár, F.
Rämö, O.T.
Cook, N.
Source :
Mineralium Deposita; Jun2024, Vol. 59 Issue 5, p931-947, 17p
Publication Year :
2024

Abstract

Silver is probably the closest isotopic proxy to track monoisotopic gold and has been shown to have great potential to yield new information on the origin and enrichment processes of gold. This study describes the development of a tailored analytical protocol for accurate analysis of Ag isotopes and provides the first Ag isotope data for the Paleoproterozoic Rajapalot Au-Co deposit, Finnish Lapland. Six native Au samples yield ε<superscript>109</superscript>Ag values (relative to NIST SRM 978a) from −6.8 to +2.1 and are within the range of Ag isotopic compositions reported for native Au samples. The mean of the analyzed Au samples is ε<superscript>109</superscript>Ag = −3.8 ± 1.7 (2SD) with most of the samples with negative ε<superscript>109</superscript>Ag values (−6.7 to −2.0); one sample has a positive ε<superscript>109</superscript>Ag value of +2.1 ± 0.5. Silver isotope fractionation in the Rajapalot Au deposit was likely associated with physicochemical processes related to deposition and/or re-mobilization of the ore rather than with source region inheritance. It is suggested that redox reactions involving Ag<superscript>+</superscript> ↔ Ag<superscript>0</superscript> phase change primarily account for the isotopic differences within the deposit. Our results also suggest that the Rajapalot Au-Co deposit was formed via multistage ore-forming processes and/or that the primary ore was re-mobilized, which caused isotope fractionation along fluid pathways. Silver isotope variation within a deposit may mark a fractional crystallization trend with the lightest isotopic composition representing the earliest precipitate. Hence, Ag isotopes show potential as an isotopic vectoring tool in search of Au-enriched domains. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00264598
Volume :
59
Issue :
5
Database :
Complementary Index
Journal :
Mineralium Deposita
Publication Type :
Academic Journal
Accession number :
177309731
Full Text :
https://doi.org/10.1007/s00126-023-01239-y