Back to Search
Start Over
On the square of Fibonacci and Lucas numbers of the form (22s - 1)x + (2s+1)y.
- Source :
- International Journal of Mathematics & Computer Science; 2024, Vol. 19 Issue 3, p553-560, 8p
- Publication Year :
- 2024
-
Abstract
- Let F<subscript>k</subscript> be a Fibonacci number and let L<subscript>k</subscript> be a Lucas number. By applying Catalan's conjecture and the modular arithmetic method, we solve the exponential Diophantine equations of the form (2<superscript>2s</superscript>-1)<superscript>x</superscript> + (2<superscript>s+1</superscript>)<superscript>y</superscript> = F<subscript>2</subscript><subscript>k</subscript> and (2<superscript>2s</superscript> - 1)<superscript>x</superscript> + (2<superscript>s+1</superscript>)<superscript>y</superscript> = L²<subscript>k</subscript> where x, y, k are non-negative integers and s is a positive integer. [ABSTRACT FROM AUTHOR]
- Subjects :
- LUCAS numbers
DIOPHANTINE equations
MODULAR arithmetic
INTEGERS
CATALAN numbers
Subjects
Details
- Language :
- English
- ISSN :
- 18140424
- Volume :
- 19
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- International Journal of Mathematics & Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- 177298783