Back to Search Start Over

On the square of Fibonacci and Lucas numbers of the form (22s - 1)x + (2s+1)y.

Authors :
Taher, Hunar Sherzad
Dash, Saroj Kumar
Source :
International Journal of Mathematics & Computer Science; 2024, Vol. 19 Issue 3, p553-560, 8p
Publication Year :
2024

Abstract

Let F<subscript>k</subscript> be a Fibonacci number and let L<subscript>k</subscript> be a Lucas number. By applying Catalan's conjecture and the modular arithmetic method, we solve the exponential Diophantine equations of the form (2<superscript>2s</superscript>-1)<superscript>x</superscript> + (2<superscript>s+1</superscript>)<superscript>y</superscript> = F<subscript>2</subscript><subscript>k</subscript> and (2<superscript>2s</superscript> - 1)<superscript>x</superscript> + (2<superscript>s+1</superscript>)<superscript>y</superscript> = L²<subscript>k</subscript> where x, y, k are non-negative integers and s is a positive integer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18140424
Volume :
19
Issue :
3
Database :
Complementary Index
Journal :
International Journal of Mathematics & Computer Science
Publication Type :
Academic Journal
Accession number :
177298783