Back to Search Start Over

Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans.

Authors :
Yangkai Zhou
An Yan
Jiawen Yang
Wei He
Shuai Guo
Yifan Li
Jing Wu
Yanchao Dai
Xijiang Pan
Dongyu Cui
Pereira, Olivier
Wenkai Teng
Ran Bi
Songze Chen
Lu Fan
Peiyi Wang
Yan Liao
Wei Qin
Sen-Fang Sui
Yuanqing Zhu
Source :
Frontiers in Microbiology; 2024, p01-12, 12p
Publication Year :
2024

Abstract

Introduction: Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods: In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion: Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664302X
Database :
Complementary Index
Journal :
Frontiers in Microbiology
Publication Type :
Academic Journal
Accession number :
177241022
Full Text :
https://doi.org/10.3389/fmicb.2024.1367658