Back to Search Start Over

Conversion of LiPSs Accelerated by Pt‐Doped Biomass‐Derived Hyphae Carbon Nanobelts as Self‐Supporting Hosts for Long‐Lifespan Li–S Batteries.

Authors :
Han, Fengfeng
Fan, Liwen
Ma, Xinzhi
Lu, Huiqing
Li, Lu
Zhang, Xitian
Wu, Lili
Source :
Energy & Environmental Materials; May2024, Vol. 7 Issue 3, p1-10, 10p
Publication Year :
2024

Abstract

Rechargeable Li–S batteries (LSBs) are emerging as an important alternative to lithium‐ion batteries (LIBs), owing to their high energy densities and low cost; yet sluggish redox kinetics of LiPSs results in inferior cycle life. Herein, we prepared multifunctional self‐supporting hyphae carbon nanobelt (HCNB) as hosts by carbonization of hyphae balls of Rhizopus, which could increase the S loading of the cathode without sacrificing reaction kinetics. Trace platinum (Pt) nanoparticles were introduced into HCNBs (PtHCNBs) by ion‐beam sputtering deposition. Based on the X‐ray photoelectron spectroscopy analyses, the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs. Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species. Benefiting from the synergistic catalytic effect and the unique structures, the as‐prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77% for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm−2. More importantly, remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm−2. This finding offers a new strategy to prolong the cycle life of LSBs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25750356
Volume :
7
Issue :
3
Database :
Complementary Index
Journal :
Energy & Environmental Materials
Publication Type :
Academic Journal
Accession number :
177195394
Full Text :
https://doi.org/10.1002/eem2.12623