Back to Search
Start Over
Enhancing brain tumor detection in MRI images through explainable AI using Grad-CAM with Resnet 50.
- Source :
- BMC Medical Imaging; 5/11/2024, Vol. 24 Issue 1, p1-19, 19p
- Publication Year :
- 2024
-
Abstract
- This study addresses the critical challenge of detecting brain tumors using MRI images, a pivotal task in medical diagnostics that demands high accuracy and interpretability. While deep learning has shown remarkable success in medical image analysis, there remains a substantial need for models that are not only accurate but also interpretable to healthcare professionals. The existing methodologies, predominantly deep learning-based, often act as black boxes, providing little insight into their decision-making process. This research introduces an integrated approach using ResNet50, a deep learning model, combined with Gradient-weighted Class Activation Mapping (Grad-CAM) to offer a transparent and explainable framework for brain tumor detection. We employed a dataset of MRI images, enhanced through data augmentation, to train and validate our model. The results demonstrate a significant improvement in model performance, with a testing accuracy of 98.52% and precision-recall metrics exceeding 98%, showcasing the model's effectiveness in distinguishing tumor presence. The application of Grad-CAM provides insightful visual explanations, illustrating the model's focus areas in making predictions. This fusion of high accuracy and explainability holds profound implications for medical diagnostics, offering a pathway towards more reliable and interpretable brain tumor detection tools. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14712342
- Volume :
- 24
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- BMC Medical Imaging
- Publication Type :
- Academic Journal
- Accession number :
- 177192804
- Full Text :
- https://doi.org/10.1186/s12880-024-01292-7