Back to Search
Start Over
Study on the Influence of Adjacent Double Deep Foundation Pit Excavation Sequence on Existing Tunnel Deformation Based on HSS Constitutive Model.
- Source :
- Applied Sciences (2076-3417); May2024, Vol. 14 Issue 9, p3626, 18p
- Publication Year :
- 2024
-
Abstract
- With the increase in the number of buildings along the subway, the impact of building construction on the adjacent subway tunnels has gradually come to the forefront and become an important problem to be solved in the engineering field. In particular, the excavation and unloading process of deep foundation pits will trigger an additional deformation of the subway structure, which may pose a serious threat to the safety and stability of subway tunnels. This article is based on a foundation pit project in the sub-center of Beijing, focusing on the form of a connected double foundation pit. Using the HSS constitutive model for soil materials, this study simulates the deformation response of adjacent existing subway tunnels under three excavation sequences: sequential excavation, simultaneous excavation, and the comprehensive excavation of the connected double foundation pits. The study shows that, from the point of view of the total displacement of the whole construction process, the impact of a synchronized excavation of double pits on the existing tunnel line is relatively large in the process, and the impact of sequential excavation is relatively small in the construction cycle. The result of the similarity of the excavation sequence is the similarity of the impact trend. The volume of excavated earth determines the value of displacement change for each excavation scenario in each working condition and is also responsible for the convergence of changes. The trend of total tunnel displacement is more consistent with that of vertical displacement, which is dominated by vertical displacement, with horizontal displacement having a relatively small influence. The maximum value of the total tunnel displacement occurs at the side of the tunnel near the excavation area, and the direction is inclined to the excavation area. The application of supporting structures, especially the center plate and the bottom plate, can suppress the vertical deformation of the tunnel bulge. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 14
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 177181429
- Full Text :
- https://doi.org/10.3390/app14093626