Back to Search
Start Over
Locally free Caldero–Chapoton functions via reflections.
- Source :
- Mathematische Zeitschrift; May2024, Vol. 307 Issue 1, p1-25, 25p
- Publication Year :
- 2024
-
Abstract
- We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00255874
- Volume :
- 307
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Mathematische Zeitschrift
- Publication Type :
- Academic Journal
- Accession number :
- 177057926
- Full Text :
- https://doi.org/10.1007/s00209-024-03483-y