Back to Search Start Over

Locally free Caldero–Chapoton functions via reflections.

Authors :
Mou, Lang
Source :
Mathematische Zeitschrift; May2024, Vol. 307 Issue 1, p1-25, 25p
Publication Year :
2024

Abstract

We study the reflections of locally free Caldero–Chapoton functions associated to representations of Geiß–Leclerc–Schröer’s quivers with relations for symmetrizable Cartan matrices. We prove that for rank 2 cluster algebras, non-initial cluster variables are expressed as locally free Caldero–Chapoton functions of locally free indecomposable rigid representations. Our method gives rise to a new proof of the locally free Caldero–Chapoton formulas obtained by Geiß–Leclerc–Schröer in Dynkin cases. For general acyclic skew-symmetrizable cluster algebras, we prove the formula for any non-initial cluster variable obtained by almost sink and source mutations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00255874
Volume :
307
Issue :
1
Database :
Complementary Index
Journal :
Mathematische Zeitschrift
Publication Type :
Academic Journal
Accession number :
177057926
Full Text :
https://doi.org/10.1007/s00209-024-03483-y