Back to Search Start Over

Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System.

Authors :
Ellouze, Ameni
Kadri, Nesrine
Alaerjan, Alaa
Ksantini, Mohamed
Source :
Computers, Materials & Continua; 2024, Vol. 79 Issue 1, p351-372, 22p
Publication Year :
2024

Abstract

Recognizing human activity (HAR) from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases. Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not. Typically, smartphones and their associated sensing devices operate in distributed and unstable environments. Therefore, collecting their data and extracting useful information is a significant challenge. In this context, the aimof this paper is twofold: The first is to analyze human behavior based on the recognition of physical activities. Using the results of physical activity detection and classification, the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities. This system is based on the calculation of calories burned by each user during physical activities. In this way, conclusions can be drawn about a person's physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts. To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory (LSTM), stacked LSTM, and bidirectional LSTM. Since human activity data contains both spatial and temporal information, we proposed, in this paper, to use of an architecture allowing the extraction of the two types of information simultaneously. While Convolutional Neural Networks (CNN) has an architecture designed for spatial information, our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data. The results obtained achieved an accuracy of 96%. On the other side, the data learned by these algorithms is prone to error and uncertainty. To overcome this constraint and improve performance (96%), we proposed to use the fusion mechanisms. The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making. The Voting and Dempster-Shafer (DS) approaches are employed. The results showed that fused classifiers based on DS theory outperformed individual classifiers (96%) with the highest accuracy level of 98%. Also, the findings disclosed that participants engaging in physical activities are healthy, showcasing a disparity in the distribution of physical activities between men and women. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15462218
Volume :
79
Issue :
1
Database :
Complementary Index
Journal :
Computers, Materials & Continua
Publication Type :
Academic Journal
Accession number :
176916251
Full Text :
https://doi.org/10.32604/cmc.2024.048061