Back to Search Start Over

Experimental Investigation on Oxy-Hydrogen Gas Flame Injecting Coal Powder Gasification and Combustion.

Authors :
Cui, Jie
Zhao, Honglei
Xu, Youning
Yang, Shuo
Pan, Honggang
Xiao, Wenke
Fu, Yudong
Xue, Zhijia
Source :
Processes; Apr2024, Vol. 12 Issue 4, p692, 17p
Publication Year :
2024

Abstract

Hydrogen energy is an important carrier for energy terminals to achieve green and low-carbon transformation. Hydrogen, as a carbon-free fuel, has great research and development value in the field of thermal power generation. This article proposes a solution for the stable combustion of coal powder using Oxy-hydrogen Gas ignition technology. An Oxy-hydrogen Gas flame injection coal powder combustion testing device was constructed to experimentally study the temperature distribution in the combustion chamber under Oxy-hydrogen Gas ignition technology, with primary air coal powder concentrations of 0.27, 0.32, and 0.36 (kg coal powder/kg air), as well as the concentration changes of volatile CO emissions during the ignition of coal powder using both Oxy-hydrogen Gas and CH<subscript>4</subscript> flames. The sensitivity of the NO generation during coal gasification combustion under the Oxy-hydrogen Gas ignition was simulated and analyzed. The results show that at a coal powder concentration of 0.32 (kg coal/kg air) and an Oxy-hydrogen Gas flow rate of 2.1 L/min, the combustion effect of coal powder is the best, and the highest combustion chamber temperature can reach 1156 K; when the concentration of coal powder varies within a range from 0.32 to 0.27, the combustion chamber temperature can be maintained at around 850K, achieving stable combustion conditions for coal powder. The only product generated by the Oxy-hydrogen Gas combustion is high-temperature water vapor, which helps the rapid gasification of coal powder and releases a large amount of volatile CO, which is beneficial for the ignition and stable combustion of coal powder. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
12
Issue :
4
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
176908014
Full Text :
https://doi.org/10.3390/pr12040692