Back to Search Start Over

Channel Estimation for Underwater Acoustic Communications in Impulsive Noise Environments: A Sparse, Robust, and Efficient Alternating Direction Method of Multipliers-Based Approach.

Authors :
Tian, Tian
Yang, Kunde
Wu, Fei-Yun
Zhang, Ying
Source :
Remote Sensing; Apr2024, Vol. 16 Issue 8, p1380, 22p
Publication Year :
2024

Abstract

Channel estimation in Underwater Acoustic Communication (UAC) faces significant challenges due to the non-Gaussian, impulsive noise in ocean environments and the inherent high dimensionality of the estimation task. This paper introduces a robust channel estimation algorithm by solving an l 1 − l 1 optimization problem via the Alternating Direction Method of Multipliers (ADMM), effectively exploiting channel sparsity and addressing impulsive noise outliers. A non-monotone backtracking line search strategy is also developed to improve the convergence behavior. The proposed algorithm is low in complexity and has robust performance. Simulation results show that it exhibits a small performance deterioration of less than 1 dB for Channel Impulse Response (CIR) estimation in impulsive noise environments, nearly matching its performance under Additive White Gaussian Noise (AWGN) conditions. For Delay-Doppler (DD) doubly spread channel estimation, it maintains Bit Error Rate (BER) performance comparable to using ground truth channel information in both AWGN and impulsive noise environments. At-sea experimental validations for channel estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems further underscore the fast convergence speed and high estimation accuracy of the proposed method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
8
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
176905145
Full Text :
https://doi.org/10.3390/rs16081380