Back to Search Start Over

Dynamic Mechanical and Biological Characterization of New 3D-Printed Polymeric Dental Materials: A Preliminary Study.

Authors :
Valenti, Chiara
Pagano, Stefano
Xhimitiku, Iva
Kutrolli, Mikaela
Masciotti, Francesca
Zara, Tommaso
Truffarelli, Tiberio
Tribbiani, Giulio
Nanussi, Alessandro
Marinucci, Lorella
Source :
Prosthesis (2673-1592); Apr2024, Vol. 6 Issue 2, p263-273, 11p
Publication Year :
2024

Abstract

The literature shows evidence of the mechanical investigation of numerous polymeric dental biomaterials using a static approach. A more representative mechanical analysis of such materials must take into account the dynamic masticatory load of the oral cavity. The aim of this work is to study the dynamic mechanical proprieties and provide an in vitro characterization of 11 3D-printed new dental biomaterials to understand their clinical applications under physiological conditions. The analysis included Dynamical Mechanical Analysis (DMA) and an MTT cytotoxicity assay. The mechanical results at low frequencies (1–11 Hz) show high uncertainty, less fragility, and less strength. The biological results show a significant reduction in cell viability (p < 0.01) at both the 3 and 24 h timepoints, with a degree of recovery observed at 24 h. To assess the clinical potential of dental biomaterials, it is necessary to determine whether there are good dynamic mechanical properties and reduced adverse biological effects on oral cells. This may allow for the facile fabrication via 3D printing of prosthetic devices that can support masticatory loads over long periods of time. Further investigations of the presented polymeric materials are needed, exploring biological assessments for longer than 24 h. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26731592
Volume :
6
Issue :
2
Database :
Complementary Index
Journal :
Prosthesis (2673-1592)
Publication Type :
Academic Journal
Accession number :
176904296
Full Text :
https://doi.org/10.3390/prosthesis6020020