Back to Search Start Over

Error Model for the Assimilation of All-Sky FY-4A/AGRI Infrared Radiance Observations.

Authors :
Pu, Dongchuan
Wu, Yali
Source :
Sensors (14248220); Apr2024, Vol. 24 Issue 8, p2572, 13p
Publication Year :
2024

Abstract

The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared satellite observations are strongly influenced by clouds, which complicates their use in all-sky data assimilation. The presence of clouds leads to increased uncertainty, and the observation-minus-background (O−B) differences can significantly deviate from the Gaussian distribution assumed in the variational data assimilation theory. In this study, we introduce two cloud-affected (Ca) indices to quantify the impact of cloud amount and establish dynamic observation error models to address biases between O−B and Gaussian distributions when assimilating all-sky data from FY-4A/AGRI observations. For each Ca index, we evaluate two dynamic observation error models: a two-segment and a three-segment linear model. Our findings indicate that the three-segment linear model we propose better conforms to the statistical characteristics of FY-4A/AGRI observations and improves the Gaussianity of the O−B probability density function. Dynamic observation error models developed in this study are capable of handling cloud-free or cloud-affected FY-4A/AGRI observations in a uniform manner without cloud detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
8
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
176902297
Full Text :
https://doi.org/10.3390/s24082572