Back to Search Start Over

A multi-omic survey of black cottonwood tissues highlights coordinated transcriptomic and metabolomic mechanisms for plant adaptation to phosphorus deficiency.

Authors :
Kangi, Emel
Brzostek, Edward R.
Bills, Robert J.
Callister, Stephen J.
Zink, Erika M.
Young-Mo Kim
Larsen, Peter E.
Cumming, Jonathan R.
Source :
Frontiers in Plant Science; 2024, p1-17, 17p
Publication Year :
2024

Abstract

Introduction: Phosphorus (P) deficiency in plants creates a variety of metabolic perturbations that decrease photosynthesis and growth. Phosphorus deficiency is especially challenging for the production of bioenergy feedstock plantation species, such as poplars (Populus spp.), where fertilization may not be practically or economically feasible. While the phenotypic effects of P deficiency are well known, the molecular mechanisms underlying whole-plant and tissue-specific responses to P deficiency, and in particular the responses of commercially valuable hardwoods, are less studied. Methods: We used a multi-tissue and multi-omics approach using transcriptomic, proteomic, and metabolomic analyses of the leaves and roots of black cottonwood (Populus trichocarpa) seedlings grown under P-deficient (5 µM P) and replete (100 µM P) conditions to assess this knowledge gap and to identify potential gene targets for selection for P efficiency. Results: In comparison to seedlings grown at 100 µM P, P-deficient seedlings exhibited reduced dry biomass, altered chlorophyll fluorescence, and reduced tissue P concentrations. In line with these observations, growth, C metabolism, and photosynthesis pathways were downregulated in the transcriptome of the Pdeficient plants. Additionally, we found evidence of strong lipid remodeling in the leaves. Metabolomic data showed that the roots of P-deficient plants had a greater relative abundance of phosphate ion, which may reflect extensive degradation of P-rich metabolites in plants exposed to long-term P-deficiency. With the notable exception of the KEGG pathway for Starch and Sucrose Metabolism (map00500), the responses of the transcriptome and the metabolome to P deficiency were consistent with one another. No significant changes in the proteome were detected in response to P deficiency. Discussion and conclusion: Collectively, our multi-omic and multi-tissue approach enabled the identification of important metabolic and regulatory pathways regulated across tissues at the molecular level that will be important avenues to further evaluate for P efficiency. These included stress-mediating systems associated with reactive oxygen species maintenance, lipid remodeling within tissues, and systems involved in P scavenging from the rhizosphere. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664462X
Database :
Complementary Index
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
176858333
Full Text :
https://doi.org/10.3389/fpls.2024.1324608