Back to Search
Start Over
Towards the insights into the deactivation behavior of acetylene hydrogenation catalyst.
- Source :
- Petroleum Science (KeAi Communications Co.); Apr2024, Vol. 21 Issue 2, p1405-1414, 10p
- Publication Year :
- 2024
-
Abstract
- A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration; finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation. The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst. [ABSTRACT FROM AUTHOR]
- Subjects :
- ACETYLENE
SURFACE analysis
CATALYSTS
SERVICE life
METALS
Subjects
Details
- Language :
- English
- ISSN :
- 16725107
- Volume :
- 21
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Petroleum Science (KeAi Communications Co.)
- Publication Type :
- Academic Journal
- Accession number :
- 176819610
- Full Text :
- https://doi.org/10.1016/j.petsci.2023.10.012