Back to Search
Start Over
An enhanced chameleon swarm algorithm for global optimization and multi-level thresholding medical image segmentation.
- Source :
- Neural Computing & Applications; May2024, Vol. 36 Issue 15, p8775-8823, 49p
- Publication Year :
- 2024
-
Abstract
- Medical image segmentation is crucial in using digital images for disease diagnosis, particularly in post-processing tasks such as analysis and disease identification. Segmentation of magnetic resonance imaging (MRI) and computed tomography images pose distinctive challenges attributed to factors such as inadequate illumination during the image acquisition process. Multilevel thresholding is a widely adopted method for image segmentation due to its effectiveness and ease of implementation. However, the primary challenge lies in selecting the optimal set of thresholds to achieve accurate segmentation. While Otsu's between-class variance and Kapur's entropy assist in identifying optimal thresholds, their application to cases requiring more than two thresholds can be computationally intensive. Meta-heuristic algorithms are commonly employed in literature to calculate the threshold values; however, they have limitations such as a lack of precise convergence and a tendency to become stuck in local optimum solutions. In this paper, we introduce an improved chameleon swarm algorithm (ICSA) to address these limitations. ICSA is designed for image segmentation and global optimization tasks, aiming to improve the precision and efficiency of threshold selection in medical image segmentation. ICSA introduces the concept of the "best random mutation strategy" to enhance the search capabilities of the standard chameleon swarm algorithm (CSA). This strategy leverages three distribution functions—Levy, Gaussian, and Cauchy—for mutating search individuals. These diverse distributions contribute to improved solution quality and help prevent premature convergence. We conduct comprehensive experiments using the IEEE CEC'20 complex optimization benchmark test suite to evaluate ICSA's performance. Additionally, we employ ICSA in image segmentation, utilizing Otsu's approach and Kapur's entropy as fitness functions to determine optimal threshold values for a set of MRI images. Comparative analysis reveals that ICSA outperforms well-known metaheuristic algorithms when applied to the CEC'20 test suite and significantly improves image segmentation performance, proving its ability to avoid local optima and overcome the original algorithm's drawbacks. Medical image segmentation is essential for employing digital images for disease diagnosis, particularly for post-processing activities such as analysis and disease identification. Due to poor illumination and other acquisition-related difficulties, radiologists are especially concerned about the optimal segmentation of brain magnetic resonance imaging (MRI). Multilevel thresholding is the most widely used image segmentation method due to its efficacy and simplicity of implementation. The issue, however, is selecting the optimum set of criteria to effectively segment each image. Although methods like Otsu's between-class variance and Kapur's entropy help locate the optimal thresholds, using them for more than two thresholds requires a significant amount of processing resources. Meta-heuristic algorithms are commonly employed in literature to calculate the threshold values; however, they have limitations such as a lack of precise convergence and a tendency to become stuck in local optimum solutions. Due to the aforementioned, we present an improved chameleon swarm algorithm (ICSA) in this paper for image segmentation and global optimization tasks to be able to address these weaknesses. In the ICSA method, the best random mutation strategy has been introduced to improve the searchability of the standard CSA. The best random strategy utilizes three different types of distribution: Levy, Gaussian, and Cauchy to mutate the search individuals. These distributions have different functions, which help enhance the quality of the solutions and avoid premature convergence. Using the IEEE CEC'20 test suite as a recent complex optimization benchmark, a comprehensive set of experiments is carried out in order to evaluate the ICSA method and demonstrate the impact of combining the best random mutation strategy with the original CSA in improving both the performance of the solutions and the rate at which they converge. Furthermore, utilizing the Otsu approach and Kapur's entropy as a fitness function, ICSA is used as an image segmentation method to select the ideal threshold values for segmenting a set of MRI images. Within the experiments, the ICSA findings are compared with well-known metaheuristic algorithms. The comparative findings showed that ICSA performs better than other competitors in solving the CEC'20 test suite and has a significant performance boost in image segmentation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09410643
- Volume :
- 36
- Issue :
- 15
- Database :
- Complementary Index
- Journal :
- Neural Computing & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 176627580
- Full Text :
- https://doi.org/10.1007/s00521-024-09524-1