Back to Search
Start Over
Multi-axis fields boost SABRE hyperpolarization.
- Source :
- Proceedings of the National Academy of Sciences of the United States of America; 4/2/2024, Vol. 121 Issue 14, p1-7, 10p
- Publication Year :
- 2024
-
Abstract
- The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104 . This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (μT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00278424
- Volume :
- 121
- Issue :
- 14
- Database :
- Complementary Index
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 176619497
- Full Text :
- https://doi.org/10.1073/pnas.2400066121