Back to Search Start Over

Enhanced Heat Dissipation for Macroscopic Metals Achieved by a Single‐Layer Graphene.

Authors :
Fang, Jiayuan
Xu, Xujun
Zhang, Yang
Ren, Qiancheng
Wei, Ning
Zhao, Pei
Source :
Advanced Materials Interfaces; Apr2024, Vol. 11 Issue 11, p1-9, 9p
Publication Year :
2024

Abstract

The increasing demand for high‐performance devices on heat dissipation makes it approach the bottleneck even for metals with high thermal conductivities. The coating of only one layer of graphene, the heat dissipation performances of Cu, Ag, and Al can be further enhanced, e.g., with a maximum temperature reduction by ≈9% for a Cu foil is demonstrated. Molecular dynamics (MD) analysis of spectral phonon transmission reveals that low‐frequency phonons play a significant role in the thermal transport within the Cu/single‐layer graphene (SLG) system, and the high‐frequency phonons exhibit substantial mismatch. It suggests that the thermal anisotropy of graphene enables a rapid heat dispersion in the in‐plane direction and provides an effective thermal insulation in the out‐of‐plane direction. The thermal conductivity calculations demonstrate an enhanced participation of phonons in heat conduction by the graphene layer, indicating a novel heat conduction mechanism in the Cu/single‐layer graphene system. These findings highlight the positive impact of graphene on the heat conduction of metals, and they will hold crucial implications for the design and application of graphene‐based thermal devices is believed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21967350
Volume :
11
Issue :
11
Database :
Complementary Index
Journal :
Advanced Materials Interfaces
Publication Type :
Academic Journal
Accession number :
176608579
Full Text :
https://doi.org/10.1002/admi.202300877