Back to Search Start Over

Study on Shear Characteristics of Herbs Plant Root–Soil Composite System in Beiluhe Permafrost Regions under Freeze–Thaw Cycles, Qinghai–Tibet Highway, China.

Authors :
Wang, Cheng
Hu, Xiasong
Lu, Haijing
Liu, Changyi
Zhao, Jimei
Xing, Guangyan
Fu, Jiangtao
Li, Huatan
Zhou, Zhe
Lv, Weitao
Liu, Yabin
Li, Guorong
Zhu, Haili
He, Dequan
Source :
Sustainability (2071-1050); Apr2024, Vol. 16 Issue 7, p2907, 19p
Publication Year :
2024

Abstract

In order to study the root–soil composite system shear characteristics under the action of freeze–thaw cycles in the permafrost regions along the Qinghai–Tibet Highway (QTH) from the Beiluhe–Tuotuohe (B-T) section, the slopes in the permafrost regions along the QTH from the B-T section were selected as the object of the study. The direct shear test of root–soil composite systems under different amounts of freeze–thaw (F-T) cycles and gray correlations were used to analyze the correlation between the number of F-T cycles, water content, root content, and the soil shear strength index. The results show that the cohesion of the soil in the area after F-T cycles exhibits a significant stepwise decrease with an increase in F-T cycles, which can be divided into three stages: the instantaneous stage (a decrease of 46.73–56.42%), the gradual stage (a decrease of 14.80–25.55%), and the stabilization stage (a decrease of 0.61–2.99%). The internal friction angle did not exhibit a regular change. The root–soil composite system showed significant enhancement of soil cohesion compared with soil without roots, with a root content of 0.03 g/cm<superscript>3</superscript> having the most significant effect on soil cohesion (increasing amplitude 65.20–16.82%). With an increase in the number of the F-T cycles, while the water content is greater than 15.0%, the greater the water content of the soil, the smaller its cohesion becomes. Through gray correlation analysis, it was found that the correlation between the number of F-T cycles, water content, root content, and soil cohesion after F-T cycles were 0.63, 0.72, and 0.66, respectively, indicating that water content had the most significant impact on soil cohesion after F-T cycles. The results of this study provide theoretical support for further understanding the variation law of the shear strength of root–soil composite systems in permafrost regions under F-T cycles and the influencing factors of plant roots to enhance soil shear strength under F-T cycles, as well as for the scientific and effective prevention and control of retrogressive thaw slump in the study area, the QTH stretches across the region. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
16
Issue :
7
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
176595254
Full Text :
https://doi.org/10.3390/su16072907