Back to Search Start Over

Analysis and modeling of the influence of gate leakage current on threshold voltage and subthreshold swing in p-GaN gate AlGaN/GaN high electron mobility transistors.

Authors :
Liu, Kai
Wang, Chong
Zhang, Kuo
Ma, Xiaohua
Bai, Junchun
Zheng, Xuefeng
Li, Ang
Hao, Yue
Source :
Journal of Applied Physics; 4/14/2024, Vol. 135 Issue 14, p1-10, 10p
Publication Year :
2024

Abstract

In this paper, the p-GaN gate AlGaN/GaN high electron mobility transistors (HEMTs) with varying combinations of gate metal work function and gate geometry are fabricated and investigate the influence of gate leakage current (I<subscript>GS</subscript>) on the threshold voltage (V<subscript>TH</subscript>) and subthreshold swing (SS). The unique dependence of V<subscript>TH</subscript> and SS on gate geometry for different metals is observed, which is different from traditional field-effect transistors. A novel hybrid physics model, consisting of the traditional capacitance divider model and hole injection model, is proposed to explain this phenomenon, and the results exhibit an excellent agreement with the experimental data. The holes traverse the gate/p-GaN Schottky barrier by thermal emission or tunneling and inject into the p-GaN layer, generating the I<subscript>GS</subscript>. Expanding upon the traditional capacitance divider model, a portion of the injected holes accumulate at the p-GaN/AlGaN interface and induce the corresponding electrons at the AlGaN/GaN heterojunction, which promotes channel conduction. Hence, the transfer curves display the correlation between I<subscript>GS</subscript> and V<subscript>TH</subscript> as well as SS. The results show that high I<subscript>GS</subscript> can alleviate the instability of V<subscript>TH</subscript> caused by the lithographic overlay error, and simultaneously optimize SS. This work offers a novel perspective for examining the turn-on mechanism of p-GaN HEMTs, thereby contributing to device design. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
135
Issue :
14
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
176580546
Full Text :
https://doi.org/10.1063/5.0200487