Back to Search Start Over

Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions.

Authors :
Haubrock, Phillip J.
Soto, Ismael
Kourantidou, Melina
Ahmed, Danish A.
Serhan Tarkan, Ali
Balzani, Paride
Bego, Kristi
Kouba, Antonín
Aksu, Sadi
Briski, Elizabeta
Sylvester, Francisco
De Santis, Vanessa
Archambaud‐Suard, Gaït
Bonada, Núria
Cañedo‐Argüelles, Miguel
Csabai, Zoltán
Datry, Thibault
Floury, Mathieu
Fruget, Jean‐François
Jones, John Iwan
Source :
Oikos; Apr2024, Vol. 2024 Issue 4, p1-19, 19p
Publication Year :
2024

Abstract

The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non‐native species worldwide, having invaded Europe and North America while causing substantial ecological and socio‐economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta‐regression models revealed non‐significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat‐top bell‐shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post‐1998. Using a series of climatic and hydromorphological site‐specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non‐native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00301299
Volume :
2024
Issue :
4
Database :
Complementary Index
Journal :
Oikos
Publication Type :
Academic Journal
Accession number :
176388171
Full Text :
https://doi.org/10.1111/oik.10283