Back to Search Start Over

The Relationship between Granitic Magma and Mineralization in the Darongxi Skarn W Deposit, Xiangzhong District, South China: Constrained by Zircon and Apatite.

Authors :
Cai, Lei
Li, Wei
Xie, Guiqing
Yin, Fangyuan
Source :
Minerals (2075-163X); Mar2024, Vol. 14 Issue 3, p280, 20p
Publication Year :
2024

Abstract

The Xiangho Zng district is the largest low-temperature W-Au-Sb metallogenic area in the world. The Darongxi skarn W deposit in the north of the Xiangzhong district is closely related to biotite monzonite granite, muscovite monzonite granite, and felsophyre, but the nature of granitic magma and its relationship with mineralization is relatively weak. In this paper, U-Pb dating, Lu-Hf isotope, the in situ composition of zircon, and the apatite of biotite monzonite granite, muscovite monzonite granite, and felsophyre in the Darongxi mining area are systematically studied, and the formation age, magma property and source, and their relationship with mineralization are discussed. The values of zircon U-Pb age and the ε<subscript>Hf</subscript>(t) of biotite monzonite granite are 222.2 ± 0.54 Ma and −2.9~−6.4, respectively. The values of zircon U-Pb age and the ε<subscript>Hf</subscript>(t) of muscovite monzonite granite are 220.8 ± 0.58 Ma and −2.7 to −8.1, respectively. The values of zircon U-Pb age and the ε<subscript>Hf</subscript>(t) of felsophyre are 222.3 ± 2.20 Ma and −2.2~−5.4, respectively. Magmatic apatite grains from biotite monzonite granite and muscovite monzonite granite show distinctive core–rim and oscillatory zoning textures in CL images, and demonstrate a bright yellow in colorful CL images. The magmatic apatite has a total rare earth concentration (3766~4627 ppm), exhibiting right-inclined nomorlized rare earth element patterns and obvious negative Eu anomalies. The geochemical data of magmatic zircon and apatite indicate that magma sources are responsible for these intrusions in the Darongxi mining area, mainly derived from the partial melting of the Mesoproterozoic crust, which is rich in W; the magma is rich in F and poor in Cl (F = 2.4~3.3 wt%, Cl = 0.0024~0.0502 wt%). The oxygen fugacity of magmatic zircon (ΔFMQ<subscript>AVG</subscript> = −4.02~−0.26), the high negative Eu anomaly (δEu = 0.06~0.12) and the low positive Ce anomaly (δCe = 1.09~1.13) of magmatic apatite, and the occurrence of ilmenite all indicate that the redox condition of magma from the Darongxi mining area is reduced. The reduced F-rich crust-source granitic rock and W-rich source provide favorable conditions for the mineralization of the Darongxi reduced skarn W deposit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
14
Issue :
3
Database :
Complementary Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
176367683
Full Text :
https://doi.org/10.3390/min14030280