Back to Search Start Over

Differential Proteomic Analysis of Low-Dose Chronic Paralytic Shellfish Poisoning.

Authors :
Liu, Xiujie
Wang, Fuli
Yu, Huilan
Liu, Changcai
Xia, Junmei
Ma, Yangde
Chen, Bo
Liu, Shilei
Source :
Marine Drugs; Mar2024, Vol. 22 Issue 3, p108, 16p
Publication Year :
2024

Abstract

Shellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.2 or <0.83, p < 0.05). In positive regulation of synaptic transmission, proteins assigned to a presynaptic membrane (e.g., Grik2) and synaptic transmission (e.g., Fmr1) changed. In addition, altered proteins in nervous system development were observed, suggesting that mice suffered nerve damage due to the nervous system being activated. Ion transport in model mice was demonstrated by a decrease in key enzymes (e.g., Kcnj11) in voltage-gated ion channel activity and solute carrier family (e.g., Slc38a3). Meanwhile, alterations in transferase activity proteins were observed. In conclusion, these modifications observed in brain proteins between the model and control mice provide valuable insights into understanding the functional mechanisms underlying shellfish poisoning. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16603397
Volume :
22
Issue :
3
Database :
Complementary Index
Journal :
Marine Drugs
Publication Type :
Academic Journal
Accession number :
176365824
Full Text :
https://doi.org/10.3390/md22030108