Back to Search Start Over

Tensile Stress‐Activated and Exosome‐Transferred YAP/TAZ‐Notch Circuit Specifies Type H Endothelial Cell for Segmental Bone Regeneration.

Authors :
Wang, Feng
Li, Shanyu
Kong, Lingchi
Feng, Kai
Zuo, Rongtai
Zhang, Hanzhe
Yu, Yifan
Zhang, Kunqi
Cao, Yuting
Chai, Yimin
Kang, Qinglin
Xu, Jia
Source :
Advanced Science; 3/27/2024, Vol. 11 Issue 12, p1-23, 23p
Publication Year :
2024

Abstract

The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development‐like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis‐like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell‐matrix interactions‐mediated activation of yes‐associated protein (YAP)/transcriptional co‐activator with PDZ‐binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta‐like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ‐Notch circuit. Additionally, TS‐stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS‐induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
12
Database :
Complementary Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
176273920
Full Text :
https://doi.org/10.1002/advs.202309133