Back to Search Start Over

Formulating Electron Beam‐Induced Covalent Linkages for Stable and High‐Energy‐Density Silicon Microparticle Anode.

Authors :
Je, Minjun
Son, Hye Bin
Han, Yu‐Jin
Jang, Hangeol
Kim, Sungho
kim, Dongjoo
Kang, Jieun
Jeong, Jin‐Hyeok
Hwang, Chihyun
Song, Gyujin
Song, Hyun‐Kon
Ha, Tae Sung
Park, Soojin
Source :
Advanced Science; 3/27/2024, Vol. 11 Issue 12, p1-14, 14p
Publication Year :
2024

Abstract

High‐capacity silicon (Si) materials hold a position at the forefront of advanced lithium‐ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano‐ to micron‐sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost‐effective but practical approach of electron beam technology, the resulting 500 mAh‐pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg−1, 1022 Wh L−1, highlighting the feasibility even in current battery production lines. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
12
Database :
Complementary Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
176273873
Full Text :
https://doi.org/10.1002/advs.202305298