Back to Search Start Over

Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts.

Authors :
Huang, Rong
Yi, Siqi
Chen, Jie
Chan, Kit Ying
Chan, Joey Wing Yan
Chan, Ngan Yin
Li, Shirley Xin
Wing, Yun Kwok
Li, Tim Man Ho
Source :
Behavioral Sciences (2076-328X); Mar2024, Vol. 14 Issue 3, p225, 10p
Publication Year :
2024

Abstract

Linguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2076328X
Volume :
14
Issue :
3
Database :
Complementary Index
Journal :
Behavioral Sciences (2076-328X)
Publication Type :
Academic Journal
Accession number :
176272213
Full Text :
https://doi.org/10.3390/bs14030225