Back to Search Start Over

Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq.

Authors :
Al-Battbootti, Myssar Jabbar Hammood
Marin, Iuliana
Al-Hameed, Sabah
Popa, Ramona-Cristina
Petrescu, Ionel
Boiangiu, Costin-Anton
Goga, Nicolae
Source :
Applied Sciences (2076-3417); Mar2024, Vol. 14 Issue 6, p2382, 21p
Publication Year :
2024

Abstract

This study explores pollution detection and classification in the Shatt al-Arab River using advanced image processing techniques. Our proposed system integrates Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms. The Shatt al-Arab River in Basra, Iraq, faces increasing pollution from human activities, including oil spills, debris, and wastewater. We conducted extensive surveys of the river and its tributaries using a DJI Mavic drone, amassing over 1000 images to train machine learning models. The results indicate that RF excels with 94% accuracy for oil spills, 92% for wastewater, and 95% for debris. SVM also performs well, achieving 92%, 88%, and 94% accuracy for the respective pollutants. KNN, though insightful, lags with 85%, 89%, and 86% accuracy. Trained on this novel image dataset, these models show promising accuracy in detecting various pollution types from drone footage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
176271344
Full Text :
https://doi.org/10.3390/app14062382