Back to Search Start Over

Can Repetitive Transcranial Magnetic Stimulation (rTMS) Promote Neurogenesis and Axonogenesis in Subacute Human Ischemic Stroke?

Authors :
De Michele, Manuela
Piscopo, Paola
Costanzo, Matteo
Lorenzano, Svetlana
Crestini, Alessio
Rivabene, Roberto
Manzini, Valeria
Petraglia, Luca
Iacobucci, Marta
Berto, Irene
Schiavo, Oscar Gaetano
Conte, Antonella
Belvisi, Daniele
Berardelli, Alfredo
Toni, Danilo
Source :
Biomedicines; Mar2024, Vol. 12 Issue 3, p670, 17p
Publication Year :
2024

Abstract

Background: Ischemic stroke may trigger neuroplastic changes via proliferation, migration towards the lesion, and differentiation of neuroprogenitor cells into mature neurons. Repetitive Transcranial Magnetic Stimulation (rTMS) may promote brain plasticity. This study aimed to assess rTMS's effect on post-stroke endogenous neuroplasticity by dosing plasma miRs 17~92, Netrin-1, Sema3A, and BDNF. Methods: In this case-controlled study, we randomized 19 ischemic stroke patients within five days from symptoms onset (T0) to neuronavigated-rTMS or sham stimulation. Stimulation was applied on the stroke hemisphere daily between the 7th and 14th day from stroke onset. Blood samples were collected at T0, before the first rTMS section (T7), and at the end of the last rTMS session (T14). Five healthy controls were also enrolled in this study. Results: Of 19 patients, 10 received rTMS and 9 sham stimulation. Compared with the sham group, in the rTMS group, plasma levels of miRs17~92 and Ntn-1 significantly increased whereas Sema3A levels tended to decrease. In multivariate linear regression analyses, rTMS was independently related to Ntn-1 and miR-25 levels at T14. Conclusions: We found an association between rTMS and neurogenesis/axonogenesis biomarker enhancement. Our preliminary data suggest that rTMS may positively interfere with natural endogenous plasticity phenomena of the post-ischemic human brain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279059
Volume :
12
Issue :
3
Database :
Complementary Index
Journal :
Biomedicines
Publication Type :
Academic Journal
Accession number :
176270905
Full Text :
https://doi.org/10.3390/biomedicines12030670