Back to Search Start Over

2D Material-Based MVS Model and Circuit Performance Analysis for GeH Field-Effect Transistors.

Authors :
Zhao, Yiju
Yoon, Youngki
Wei, Lan
Source :
IEEE Transactions on Nanotechnology; 2023, Vol. 22, p792-799, 8p
Publication Year :
2023

Abstract

This paper presents an improved multi-level simulation framework for 2D material-based nanoelectronics, which expands from device simulation, physics-based compact modeling, and circuit benchmarking, using the germanane (GeH) metal-oxide-semiconductor field-effect transistors (MOSFETs) as an example. The device simulation employs the non-equilibrium Green's function method to obtain the characteristics of 2D GeH MOSFETs for both n-type MOSFETs and p-type MOSFETs. A compact model based on the MIT virtual source model is then revised to capture the unique behaviors of 2D-material-based MOSFETs, including voltage dependency of virtual source velocity and drain-induced barrier lowering, as well as the effect of quantum capacitance. HSPICE circuit simulations are performed to analyze and optimize CMOS digital benchmark circuits. The case study demonstrates that 2D material-based transistors favor a different range of supply voltage and threshold voltage than their silicon counterpart, to achieve the optimal energy-delay product. The impact of contact resistance is also analyzed using the proposed framework. This study offers a seamless multi-level simulation approach to bridge the gap between nanoelectronics and circuit behavior, thereby advancing the understanding of materials, devices, and circuits comprehensively. The framework tailored for GeH MOSFETs provides accurate device-circuit co-optimization which can be easily extended to devices based on other 2D materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1536125X
Volume :
22
Database :
Complementary Index
Journal :
IEEE Transactions on Nanotechnology
Publication Type :
Academic Journal
Accession number :
176253042
Full Text :
https://doi.org/10.1109/TNANO.2023.3330165