Back to Search Start Over

Compatibilization of poly(methyl methacrylate) and cellulose nanocrystals through co‐continuous phase to enhance the thermomechanical properties.

Authors :
Zergane, Hichem
Abdi, Saïd
Wang, Qingbo
Wang, Luyao
Uppstu, Peter
Sundberg, Anna
Xu, Chunlin
Wang, Xiaoju
Source :
Journal of Applied Polymer Science; 5/5/2024, Vol. 141 Issue 17, p1-14, 14p
Publication Year :
2024

Abstract

The present study focuses on enhancing the thermomechanical properties of poly(methyl methacrylate) (PMMA), a transparent and biocompatible polymer known for its high strength but limited toughness. The approach involves the development of PMMA/cellulose nanocrystals (CNCs) composites. To improve the interfacial compatibility between PMMA and CNCs, a two‐step process is employed. Initially, the CNCs undergo oxidation using sodium periodate, followed by the introduction of amino groups through reductive amination. The aminated CNCs are then covalently bonded to PMMA via an amidation reaction using the "grafting onto" approach. Subsequently, the grafted CNCs are incorporated into the PMMA matrix using the solvent casting method. The resulting composites are extruded into filaments. Elemental composition analysis confirms CNC modification, revealing the presence of 1.6% nitrogen. The modified CNCs exhibit a higher degradation temperature than unmodified CNCs, showing a 50°C increase. The composites' dynamic mechanical analysis (DMA) reveals a 20% improvement in storage modulus (E′) upon incorporating 1.5% of the grafted CNCs into the PMMA matrix. This enhancement is attributed to the formation of co‐continuous phases in the composite structure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218995
Volume :
141
Issue :
17
Database :
Complementary Index
Journal :
Journal of Applied Polymer Science
Publication Type :
Academic Journal
Accession number :
176198021
Full Text :
https://doi.org/10.1002/app.55273