Back to Search
Start Over
Elzaki residual power series method to solve fractional diffusion equation.
- Source :
- PLoS ONE; 3/20/2024, Vol. 19 Issue 3, p1-15, 15p
- Publication Year :
- 2024
-
Abstract
- The time-fractional order differential equations are used in many different contexts to analyse the integrated scientific phenomenon. Hence these equations are the point of interest of the researchers. In this work, the diffusion equation for a one-dimensional time-fractional order is solved using a combination of residual power series method with Elzaki transforms. The residual power series approach is a useful technique for finding approximate analytical solutions of fractional differential equations that needs the residual function's (n-1)α derivative. Since it is challenging to determine a function's fractional-order derivative, the traditional residual power series method's application is somewhat constrained. The Elzaki transform with residual power series method is an attempt to get over the limitations of the residual power series method. The obtained numerical solutions are compared with the exact solution of this equation to discuss the method's applicability and efficiency. The results are also graphically displayed to show how the fractional derivative influences the behaviour of the solutions to the suggested method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 19
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 176152814
- Full Text :
- https://doi.org/10.1371/journal.pone.0298064