Back to Search
Start Over
An application of the theory of viscosity solutions to higher order differential equations.
- Source :
- Monatshefte für Mathematik; Apr2024, Vol. 203 Issue 4, p825-841, 17p
- Publication Year :
- 2024
-
Abstract
- We directly apply the theory of viscosity solutions to partial differential equations of order greater than two. We prove that there exists a solution in C 2 , α (B R) ∩ C (B R ¯) for the inhomogeneous ∞ -Bilaplacian equation on a ball B R ⊂ R n : Δ ∞ 2 u : = (Δ u) 3 | D (Δ u) | 2 = f (x) with Navier Boundary conditions ( u = g ∈ C (∂ B R) , Δ u = 0 on ∂ B R ). We also prove that there exists a solution in C 1 , α (R n) for all α > 0 to the eigenvalue problem on R n : Δ ∞ 2 u = - λ u + f (x) whenever n ≥ 3 , λ < 0 , and f(x) is continuous, bounded, and supported on an annulus. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00269255
- Volume :
- 203
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Monatshefte für Mathematik
- Publication Type :
- Academic Journal
- Accession number :
- 176101656
- Full Text :
- https://doi.org/10.1007/s00605-023-01907-1