Back to Search
Start Over
SpyMask enables combinatorial assembly of bispecific binders.
- Source :
- Nature Communications; 3/16/2024, Vol. 15 Issue 1, p1-17, 17p
- Publication Year :
- 2024
-
Abstract
- Bispecific antibodies are a successful and expanding therapeutic class. Standard approaches to generate bispecifics are complicated by the need for disulfide reduction/oxidation or specialized formats. Here we present SpyMask, a modular approach to bispecifics using SpyTag/SpyCatcher spontaneous amidation. Two SpyTag-fused antigen-binding modules can be precisely conjugated onto DoubleCatcher, a tandem SpyCatcher where the second SpyCatcher is protease-activatable. We engineer a panel of structurally-distinct DoubleCatchers, from which binders project in different directions. We establish a generalized methodology for one-pot assembly and purification of bispecifics in 96-well plates. A panel of binders recognizing different HER2 epitopes were coupled to DoubleCatcher, revealing unexpected combinations with anti-proliferative or pro-proliferative activity on HER2-addicted cancer cells. Bispecific activity depended sensitively on both binder orientation and DoubleCatcher scaffold geometry. These findings support the need for straightforward assembly in different formats. SpyMask provides a scalable tool to discover synergy in bispecific activity, through modulating receptor organization and geometry. Bispecific antibody architecture is often important for function but rarely optimized. Here, authors present a modular approach to assemble bispecifics in varied formats using a SpyTag/SpyCatcher approach called SpyMask, and build anti-HER2 bispecifics whose activities depend on binder orientation and bispecific geometry. [ABSTRACT FROM AUTHOR]
- Subjects :
- BISPECIFIC antibodies
CANCER cells
ENGINEERS
AMIDATION
EPITOPES
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 176081399
- Full Text :
- https://doi.org/10.1038/s41467-024-46599-9