Back to Search Start Over

Ionic Liquids as Reconditioning Agents for Paper Artifacts.

Authors :
Croitoru, Catalin
Roata, Ionut Claudiu
Source :
Molecules; Mar2024, Vol. 29 Issue 5, p963, 16p
Publication Year :
2024

Abstract

This research explores the potential of ionic liquids (ILs) in restoring paper artifacts, particularly an aged book sample. Three distinct ILs—1-ethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-methyl-3-heptylimidazolium bis(trifluoromethylsulfonyl)imide —both in their pure form and isopropanol mixtures, were examined for their specific consumption in conjunction with paper, with 1-ethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide displaying the highest absorption. Notably, the methyl-3-heptylimidazolium ionic liquid displayed pronounced deacidification capabilities, elevating the paper pH close to a neutral 7. The treated paper exhibited significant color enhancements, particularly with 1-heptyl-3-methylimidazolium and 1-pentyl-3-methylimidazolium ILs, as evidenced by CIE-Lab* parameters. An exploration of ILs as potential UV stabilizers for paper unveiled promising outcomes, with 1-heptyl-3-methylimidazolium IL demonstrating minimal yellowing post-UV irradiation. FTIR spectra elucidated structural alterations, underscoring the efficacy of ILs in removing small-molecular additives and macromolecules. The study also addressed the preservation of inked artifacts during cleaning, showcasing ILs' ability to solubilize iron gall ink, particularly the one with the 1-ethyl-3-propylimidazolium cation. While exercising caution for prolonged use on inked supports is still recommended, ILs are shown here to be valuable for cleaning ink-stained surfaces, establishing their effectiveness in paper restoration and cultural heritage preservation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
5
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
175992040
Full Text :
https://doi.org/10.3390/molecules29050963