Back to Search Start Over

Influence of Frictional Stress Models on Simulation Results of High-Pressure Dense-Phase Pneumatic Conveying in Horizontal Pipe.

Authors :
Ding, Shengxian
Zhou, Haijun
Tang, Wenying
Xiao, Ruien
Zhou, Jiaqi
Source :
Applied Sciences (2076-3417); Mar2024, Vol. 14 Issue 5, p2031, 20p
Publication Year :
2024

Abstract

Based on the two-fluid model, a three-zone drag model was developed, and the kinetic theory of granular flows and the Schneiderbauer solids wall boundary model were modified to establish a new three-dimensional (3D) unsteady mathematical model for high-pressure dense-phase pneumatic conveying in horizontal pipe. With this mathematical model, the influence of the three frictional stress models, namely Dartevelle frictional stress model, Srivastava and Sundaresan frictional stress model, and the modified Berzi frictional stress model, on the simulation result was explored. The simulation results showed that the three frictional stress models accurately predicted the pressure drop and its variations with supplementary gas in the horizontal pipe, with relative errors ranging from −4.91% to +7.60%. Moreover, the predicted solids volume fraction distribution in the cross-section of the horizontal pipe using these frictional stress models exhibited good agreement with the electrical capacitance tomography (ECT) images. Notably, the influence of the three frictional stress models on the simulation results was predominantly observed in the transition region and deposited region. In the deposited region, stronger frictional stress resulting in lower solids volume fraction and a higher pressure drop in the horizontal pipe were observed. Among the three frictional stress models, the simulation results with the modified Berzi frictional stress model aligned better with the experimental data. Therefore, the modified Berzi frictional stress model is deemed more suitable for simulating high-pressure dense-phase pneumatic conveying in horizontal pipe. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
5
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
175988084
Full Text :
https://doi.org/10.3390/app14052031