Back to Search Start Over

Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng.

Authors :
Yu, Xiaochen
Yu, Jinghui
Liu, Sizhang
Liu, Mingming
Wang, Kangyu
Zhao, Mingzhu
Wang, Yanfang
Chen, Ping
Lei, Jun
Wang, Yi
Zhang, Meiping
Source :
Plants (2223-7747); Mar2024, Vol. 13 Issue 5, p604, 19p
Publication Year :
2024

Abstract

Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22237747
Volume :
13
Issue :
5
Database :
Complementary Index
Journal :
Plants (2223-7747)
Publication Type :
Academic Journal
Accession number :
175987147
Full Text :
https://doi.org/10.3390/plants13050604